24 research outputs found

    The Architecture and Performance Evaluation of iSCSI-Based United Storage Network Merging NAS and SAN

    Get PDF
    With the ever increasing volume of data in networks, the traditional storage architecture is greatly challenged; more and more people pay attention to network storage. Currently, the main technology of network storage is represented by NAS (Network Attached Storage) and SAN (Storage Area Network). They are different, but mutually complementary and used under different circumstances; however, both NAS and SAN may be needed in the same company. To reduce the TOC (total of cost), for easier implementation, etc., people hope to merge the two technologies. Additionally, the main internetworking technology of SAN is the Fibre Channel; however, the major obstacles are in its poor interoperability, lack of trained staff, high implementation costs, etc. To solve the above-mentioned issues, this paper creatively introduces a novel storage architecture called USN (United Storage Networks), which uses the iSCSI to build the storage network, and merges the NAS and SAN techniques supplying the virtues and overcoming the drawbacks of both, and provides both file I/O and block I/O service simultaneously

    Effects of Different Tillage and Fertilization Methods on the Yield and Nitrogen Leaching of Fragrant Rice

    No full text
    Conservation tillage and deep-side fertilization both hold the potential to reduce nitrogen leaching and improve grain yield and nitrogen use efficiency in fragrant rice cultivation practices. However, the combined impact of different tillage practices with deep-side fertilization on nitrogen leaching remains uncertain. Therefore, this study conducted on-site experiments for four rice-growing seasons in both early and late seasons in 2018 and 2019 using the fragrant rice varieties “Meixiangzhan 2” (MX) and “Xiangyaxiangzhan” (XY). The four experimental treatments included the following: conventional tillage with regular fertilization (T1), conventional tillage with simultaneous deep fertilization (T2), reduced tillage with simultaneous deep fertilization (T3), and no-tillage with simultaneous deep fertilization (T4). Our results indicate that the T4 treatment exhibited higher nitrogen leaching rates and potential nitrogen losses throughout the entire rice growth cycle, with a 4.51% increase in total mineral nitrogen leaching (TMNL) and a 1.86% increase in potential nitrogen leaching compared to T1 treatment. In contrast, the T2 treatment demonstrated the lowest nitrogen leaching rate, resulting in a 6.01% reduction in TMNL and a 9.57% decrease in potential nitrogen leaching compared to T1, demonstrating the most optimal performance. It is important to note that a reduction in nitrogen leaching does not directly translate into an increase in rice yield. Our study involved the cultivation of two fragrant rice varieties, ‘Meixiangzhan2’ (MX) and ‘Xiangyaxiangzhan’ (XY), and the results revealed some interesting insights. For MX, the T1 treatment resulted in lower daily grain outputs compared to the other treatments, with disparities ranging from 5.35% to 9.94%. Similarly, for XY, the T1 treatment yielded significantly lower daily grain outputs compared to the other treatments, with discrepancies ranging from 6.26% to 10.81% during the late season of 2019. Therefore, this study suggests that conventional tillage combined with deep fertilizer application can be considered as an effective agricultural strategy to reduce nitrogen leaching and enhance fragrant rice yields

    Effect of Exogenous Melatonin Application on the Grain Yield and Antioxidant Capacity in Aromatic Rice under Combined Lead–Cadmium Stress

    No full text
    This study aimed to determine the mechanism of exogenous melatonin application in alleviating the combined Pb and Cd (Pb-Cd) toxicity on aromatic rice (Oryza sativa L.). In this study, a pot experiment was conducted; two aromatic rice varieties, Yuxiangyouzhan and Xiangyaxiangzhan, were selected, and sprays using 50, 100, 200, and 400 ÎŒmol L−1 melatonin (denoted as S50, S100, S200, and S400) and irrigation using 100, 300, and 500 ÎŒmol L−1 melatonin (denoted as R100, R300, and R500) were also selected. The results showed that, under the S50, S100, and S200 treatments, the Pb content of aromatic rice grain decreased, and the grain yield increased significantly. Moreover, the application of exogenous melatonin significantly reduced the accumulation of H2O2 in rice leaves at maturity under Cd–Pb stress and reduced the MDA content in Xiangyaxiangzhan leaves. In addition, the microbial community structure changed significantly under S50 and R300 treatments. Some pathways, such as the synthesis of various amino acids and alanine, aspartate, and glutamate metabolism, were regulated by S50 treatment. Overall, melatonin application improved aromatic rice grain yield while reducing heavy metal accumulation by regulating the antioxidant capacity and metabolites in aromatic rice plants and altering the physicochemical properties and microbial community structures of the soil

    Roles of Nitrogen Deep Placement on Grain Yield, Nitrogen Use Efficiency, and Antioxidant Enzyme Activities in Mechanical Pot-Seedling Transplanting Rice

    No full text
    Mechanical pot-seedling transplanting (PST) is an efficient transplanting method and deep nitrogen fertilization has the advantage of increasing nitrogen use efficiency. However, little information is available about the effect of PST when coupled with mechanized deep nitrogen (N) fertilization on grain yield, nitrogen use efficiency, and antioxidant enzyme activities in rice. A two-year field experiment was performed to evaluate the effect of PST coupled with deep N fertilization in both early seasons (March–July) of 2018 and 2019. All seedlings were transplanted by PST and three treatments were designed as follows. There was a mechanized deep placement of all fertilizer (MAF), broadcasting fertilizer (BF), no fertilizer (N0). MAF significantly increased grain yield by 52.7%. Total nitrogen accumulation (TNA) was enhanced by 27.7%, nitrogen partial factor productivity (NPFP) was enhanced by 51.4%. nitrogen recovery efficiency (NRE) by 123.7%, and nitrogen agronomic efficiency (NAE) was enhanced by 104.3%, compared with BF treatment. Moreover, MAF significantly improved peroxidase (POD), catalase (CAT), and notably reduced the malonic dialdehyde (MDA) content for both rice cultivars, compared to BF. Hence, the result shows that mechanical pot-seedling transplanting coupled with nitrogen deep placement is an efficient method with the increase of grain yield and nitrogen use efficiency in rice cultivation in South China

    Supplementation of 2-Ap, Zn and La Improves 2-Acetyl-1-Pyrroline Concentrations in Detached Aromatic Rice Panicles In Vitro.

    No full text
    Aromatic rice is highly prized by consumers worldwide due to its special aromatic character. 2-acetyl-1-pyrroline (2-AP) is considered to be the single most important volatile compound responsible for aroma in aromatic rice. The present study demonstrated the effects of 2-AP, zinc (Zn) and lanthanum (La) on the 2-AP concentration of detached aromatic rice panicles in vitro. Detached panicles from three well-known aromatic cultivars, Guixiangzhan, Pin14, and Pin 15, were cultured separately in basic culture medium supplemented with 2-AP, Zn and La, and 2-AP concentrations were assessed at 7 and 14 days after culture (DAC). The results show that supplementation of 2-AP, Zn and La in the basic culture medium significantly increases the accumulation of proline. 2-AP concentration and the activity of proline dehydrogenase (ProDH) were also increased in rice grains. Zn concentrations were also found to be higher when Zn was added to the basic culture medium, and La concentrations in grains were too low to be measured. Additionally, grain 2-AP concentrations were significantly and positively correlated with proline concentrations, ProDH activities in grains and 2-AP in culture medium. In summary, higher grain 2-AP concentrations might be due to Zn- and La-induced increases in proline concentrations and ProDH activities, as well as the direct uptake and transportation of 2-AP from the culture medium. Furthermore, application of both Zn and La might be helpful for improving aroma formation in rice. However, interactions of both these elements with the complex process of 2-AP formation remain to be explored

    Exogenous Îł-aminobutyric acid (GABA) application at different growth stages regulates 2-acetyl-1-pyrroline, yield, quality and antioxidant attributes in fragrant rice

    No full text
    The aim of this study was to investigate the optimum time for γ-aminobutyric acid (GABA) application to improve the yield and quality in fragrant rice. Pot and field experiments were conducted during 2016–17 with two fragrant rice cultivars (for pot experiment), and five fragrant rice cultivars (for field experiment) which were applied with five GABA levels i.e. no GABA application (CK), application of GABA at 250 mg l−1 with 25 ml pot−1 at tillering stage (S1), panicle initiation stage (S2), heading stage (S3), and at tillering, panicle initiation and heading stages (S4) in the pot experiment. Similarly, the same treatments with 100 ml m−2 were applied to all rice cultivars in the field experiment. The S3 treatment significantly increased the 2-acetyl-1-pyrroline (2AP) contents in Meixiangzhan2 (14.76%) and Yuxiangyouzhan (20.19%) in pot experiment, Meixiangzhan2 (27.27%), Yuxiangyouzhan (40.24%), Basmati (43.07%) and Yungengyou14 (13.66%) in field experiment owing to regulations in the contents of proline, Δ1-pyrroline-5-carboxylic acid (P5C), GABA and the activities of enzymes involved in 2AP formation. The GABA treatments improved yield and modulated the antioxidant enzyme activities. This study provides a reference for the GABA application to improve yield and quality in fragrant rice

    Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack

    No full text
    Transition radiation (TR) induced by electron-matter interaction usually demands vast accelerating voltages, and the radiation angle cannot be controlled. Here we present a mechanism of direction controllable inverse transition radiation (DCITR) in a graphene-dielectric stack excited by low-velocity electrons. The revealed mechanism shows that the induced hyperbolic-like spatial dispersion and the superposition of the individual bulk graphene plasmons (GPs) modes make the fields, which are supposed to be confined on the surface, radiate in the stack along a special radiation angle normal to the Poynting vector. By adjusting the chemical potential of the graphene sheets, the radiation angle can be controlled. And owing to the excitation of bulk GPs, only hundreds of volts for the accelerating voltage are required and the field intensity is dramatically enhanced compared with that of the normal TR. Furthermore, the presented mechanism can also be applied to the hyperbolic stack based on semiconductors in the infrared region as well as noble metals in the visible and ultraviolet region. Accordingly, the presented mechanism of DCITR is of great significance in particle detection, radiation emission, and so on

    Level of movement skills and dexterity in relation to movement activities of pre-school children in their ordinary lives

    No full text
    and keywords The level of movement skills and dexterity in relation to movement activities of pre- school children in their ordinary lives. The diploma thesis deals with the issue of movement activity of pre-school children. Movement activities are vital part of healthy life, especially for children. It should be an essential part of every activity, no matter if it is sport, game, relaxation or just a walk to school. It should be a common part of every pre-school child daily programme. The activities reflect the level of movement skills and dexterity, which get behind so much these days. That is why it is necessary to evolve and improve them. The thesis is focused on influence of controlled movement activities to results of elementary skills and potential of pre-school children. The theoretical part describes it in general (movement activity, skills, dexterity, movement,...) and individual meanings. The practical part deals with testing of children and questioning of their parents. The results bring information on relation between of amount of controlled activities of children and their performance in basic kinetic tests. The fundamental is to create an overview of level of movement skills and dexterity using testing of particular age groups of pre-school children Preschool age Movement skills..
    corecore